
19 April, 2019 1 © High-logic

Composite Data Update
FontCreator 12 brings some major changes and improvements to CompositeData.xml so this document has
been rewritten instead of just appending any changes to the previous version. The data can be edited in a
plain text editor (I use a WordPad clone called Jarte. Any changes to CompositeData.xml after the release
of FontCreator 12 will be appended to the end of this document. Anchor-based composites usually improve
the positioning of diacritics, especially for italic typefaces. Mix both methods for optimal results.

Instructions for CompositeData.xml
<InheritAdvanceWidth>48</InheritAdvanceWidth> Inherits the advance width of glyph figure zero
(decimal code-point 48). Used by currency symbols and mathematical operators.

<InheritLSB>45</InheritLSB> Inherits the left side-bearing from glyph hyphen (decimal code-point 45).

<InheritRSB>116</InheritRSB> Inherits the right side-bearing from glyph t (decimal code-point 116)

<InheritSB>65</InheritSB> Inherits the side-bearings from glyph Capital A (decimal code-point 65).

<InheritFromGlyphLSB>a.pcap</InheritFromGlyphLSB>

<InheritFromGlyphRSB>b.smcp</InheritFromGlyphRSB>

<LSB>120</LSB> Sets the left side-bearing to 120 funits.

<RSB>44</RSB> Sets the right side-bearing to 44 funits.

<SB>100</SB> Sets both side-bearings to 100 funits.

<SwapSB>True</SwapSB> Swap inherited side-bearings (useful for mirrored or rotated glyphs)

<AdvanceWidth>1024</AdvanceWidth> Sets the advance width to 1024 funits. Used by diacritics.
Combining diacritics, being non-spacing characters, have zero width.

The above instructions apply to the <Composite> definition,
while the following apply to the composite glyph <Member> definition.

<Member id = "2"> Each glyph member can now have an id number for use later in that composite
definition.

<Base>2</Base> By default, the first glyph member is assumed to be the base glyph on which the
diacritics are positioned. This instruction tells FontCreator to use the second (or another) glyph member as
the base glyph. Used for composites like Dz caron.

<Pos>Auto</Pos> For many composites, this is all that is needed. FontCreator will position most diacritics
correctly over or under the base glyph, raising them for uppercase by the difference between CapHeight
and x-height. If you’re not satisfied with the results, you can manually change the CapHeight on Format,
Settings, Metrics, and recompose the uppercase composites. Later you can recalculate the CapHeight.

Design standard diacritics in the correct vertical position for lowercase.

<Pos>Next</Pos> For most ligatures or digraphs like IJ, Nj, and Dz, and Alphabetic Presentation Forms like
fi, fl, ff, the second glyph is positioned directly after the first, in the position it would normally be without
kerning if typed as a separate character. If the designer opts to kern ligatures more tightly, the advance
width will need reducing to suit.

<TreatAsUppercase>TRUE</TreatAsUppercase> Tells FontCreator to regard the base glyph as a capital
letter, even though it is lowercase. Use by h caron, k caron, etc.

<TreatAsLowercase>TRUE</TreatAsLowercase> Tells FontCreator to regard the base glyph as
lowercase. Used by Capitals with Stacking Diacritics.

Design stacking and uppercase diacritics in the correct vertical position for uppercase.

<InheritLSB>TRUE</InheritLSB> The composite inherits the left side bearing of the composite glyph
member.

<InheritRSB>TRUE</InheritRSB> The composite inherits the right side bearing of the composite glyph
member. Used together, these two ensure the correct advance width for fractions and ligatures.

<AlignHorizontal> Aligns the destination glyph horizontally with the source glyph. An offset can be used
too. In the illustration, the tilde can be offset from the centre of the “y” by a percentage of the width of the
“y.” Positive values offset the point of alignment to the right. One could also offset the tilde by a percentage
of its own width, or by a fixed value.

http://www.softerviews.org/Jarte.html

19 April, 2019 2 © High-logic

<Source> Defines the point on the source glyph on which the destination glyph is aligned
<Position> Left, Right, or Center (sic, not Centre) of the base glyph

</Source> Ends the definition of the source glyph
<Dest> Defines the point on the destination glyph used for alignment

<Position> Left, Right, or Center of the destination glyph that is moved
<Offset>10</Offset> Adjusts the alignment point by a fixed value

 Offsets may be a percentage (25%), or defined in units per em (0.80 em), and can be negative
</Dest> Ends the definition of the destination glyph
</AlignHorizontal> Ends the definition of one pair of glyphs to be aligned horizontally.

<AlignVertical> Aligns the destination glyph vertically
with the source glyph. For vertical alignment, the source
may also be any of these font metrics: WinAscent,
TypoAscender, CapHeight, xHeight, Baseline,
TypoDescender, or WinDescent. Vertical offsets can be
a fixed value, a percentage of the glyph’s height, a
percentage of the font metrics, or expressed in units per
em (1em = 2048 funits for many fonts). Positive values
offset the point of alignment upwards.

<Source> Defines the point on the source glyph on
which the destination glyph is aligned
<Position> Top, Middle, or Bottom of the source or
destination glyph; or at the font’s CapHeight,
xHeight, Baseline, WinAscent, WinDescent,
TypoAscender, or TypoDescender
</Source> Ends the definition of the source glyph
<Dest> Defines the point on the destination glyph
used for alignment

<Position> Top, Middle, or Bottom of the
destination glyph that is moved

<Offset>10</Offset> Adjusts the alignment
point by a fixed value
 Offsets may be a percentage (e.g. 25%), or
negative
</Dest> Ends the definition of the destination glyph
</AlignVertical> Ends the definition of one pair of glyphs to be aligned vertically

Other Instructions
<Composite> Start of composite definition </Composite> End of composite definition
<!-- Any Text Here --> Comments are used for glyph names
<GlyphMapping> Decimal code-point of composite or glyph member
<Member> Start of composite glyph member definition </Member> End of definition
<UseMetrics>TRUE</UseMetrics> Use this glyph’s metrics. FALSE is assumed otherwise.
<XPos>100</XPos> Horizontal offset 100 funits to the right (negative values are to the left)
<YPos>500</YPos> Vertical offset 500 funits upwards (negative values are downwards)
<XScale>-1</XScale> Flips the glyph horizontally about the Y-Axis (range ± 1.9999)
<YScale>1.25</YScale> Scales the glyph by 125% vertically (range ± 1.9999)

These instructions are precise, but only for the font used to design the code. If it doesn’t work well for your
fonts, let us know where the problem lies, and perhaps we can improve the code. The definitions were based
on the free font Verajja Regular.

One can set bearings for the composite, and align glyph members horizontally or vertically with each other,
or vertically with font metrics. One can use offsets from these positions — either as a percentage or as an
absolute value.

Wherever CompositeData.xml uses variables that are set from font metrics, the user can make adjustments
by manually changing these font metrics. After the design stage is complete, the correct metrics for the
font can be recalculated.

FontCreator can use fallback glyph members if they are defined. That is, if the first glyph is unavailable, it
will use another one. For example, if Uppercase diacritics are available it will use them, but if not, regular
diacritics will be used instead: The end result is that after using Complete Composites, the user should have
much less work to do aligning diacritics. It will still be necessary to check, but most will be right.

Destination Glyph

Source

Glyph

Destination

Glyph

Top

Bottom

Middle

Left Center Right

WinAscent

WinDescent

Baseline

TypoDescender

xHeight

CapHeight
TypoAscender

Offset

Offset

https://forum.high-logic.com/viewtopic.php?f=10&t=1380

19 April, 2019 3 © High-logic

Processing Order for Instructions
1. Add glyph members to the composite;
2. Set XPos, YPos, XScale and YScale values
3. Apply Next Pos
4. Apply Auto Pos
5. Apply horizontal and vertical alignment
6. Apply Inherit Bearings
7. Apply UseMetrics

Stacking Diacritics for Vietnamese
The limiting factor is the space available above capitals. Stacking diacritics vertically will
increase the line-spacing required to maintain legibility. It is better to reduce the height of
the diacritics and/or stack them side by side. Times New Roman does the former.

In Times New Roman, the diacritics are much smaller for Uppercase than those for
lowercase. I prefer the method used by Victor Gaultney for Gentium. The diacritics for
upper and lowercase are almost the same size, but at a shallower angle.

The stacking diacritics are now unmapped. Use the Glyph Transform feature to add
these diacritics. For Vietnamese you will need to add the Combining Hook Above (777) and
Combining Horn (795). Complete composites will approximate these diacritics with the
Question Mark and Right Single Quote respectively. Convert them to simple glyphs and
modify them to suit the design of the font that you are creating.

To design the combining horn, use the Comparison toolbar to display the lowercase
“o” or “u,” and display a letter like "t" or “v” to the right. Design the horn to avoid
clashes with the letters that follow it. To design the combining hook, display an "a"
before, and an diacritical vowel afterwards. This will give a guide to the size, weight,
and position for the combining hook diacritic. Most combining diacritics will have zero
advance width and a negative side-bearing.

Stacking diacritics should have Contour 0 on the left, and Contour 1 or 2 on the right.

After designing the diacritics, run the Transform script to add the
Vietnamese glyphs, and most of the hard work is done automatically. All
you need to do is check that diacritics are in the right position. Stacking
diacritics won’t be moved vertically. They are designed to fit between
WinAscent and the uppercase vowels.

Superscripts
Super/subscripts should be made heavier to compensate for scaling. Use
the Glyph Transform Wizard to create them. Click the folder icon to open
the Superscript Transform script.

This is what it does:

Script: Superscript.xml
Insert Characters 8304, 185, 178, 179, 8308-8316
Complete Composites
Decompose
Scale (65, 60), LT (about Top Left corner of the glyph).
Bold (26, 20)
Move (0, -20)
Width (fixed 899) Both sides
Set left side-bearing at x=0

Top alignment is designed to align with the top of the figures. Change the Move value from -20 to +80 (or
more) for higher superscripts like the ² in the above illustration. The advance width (default 899) must be
calculated to suit each font by scaling the figure width by 65% and adding twice the horizontal weight
increase to the overall width.

Subscripts
Subscripts are composed from superscripts. This reduces the workload if you use glyph transform to
increase the weight of superscripts as recommended. The subscripts are designed to bisect the baseline.
Denominators for fractions can also use the superscript glyphs, but can be designed to sit on the baseline.

19 April, 2019 4 © High-logic

Fractions
Fractions are composed from superscripts and denominators. Both
numerators and denominators use the superscript glyphs, but
denominators are moved down to the baseline. If the fraction slash (8260)
does not exist, compose it from forward slash, then skew it forwards. To
adjust the spacing of fractions, edit the fraction slash. Type the glyph
names as /one.sups and /four.dnom (or whatever you prefer) in the
comparison toolbar. Move the glyph and the right side-bearing line until the
spacing is about right. Then compose the fractions again. The instruction
<Pos>Next</Pos> is used for fractions so that their advance width is simply
the sum of the widths of each composite glyph member.

Composites Used to Aid Design
Multiply (×), divides (÷), minus (−), uppercase (Þ) and lowercase thorn (þ),

Icelandic k (ĸ), uppercase (Ŋ) and lowercase eng (ŋ), Italian Lira (₤), and
many other symbols are defined as composites just as an aid to design.
You need to convert them to simple glyphs and edit them by deleting

or moving nodes, cutting contours with the knife, and joining contours with
“Get union of contours.” Using composites in this way encourages consistent

design, for example to ensure that plus, minus, multiply, and divides all have the same
stroke weights, advance width, and vertical alignment.

Composites With Stroke
Composites with stroke and currency symbols use stroke overlays (821-823) to ensure
a consistent stroke weight. It is often similar to other horizontal strokes in the font.
These composites should be made simple before using “Get Union of Contours.” If the
overlay strokes are missing, the underline glyph (95) will be used instead.

Greek and Coptic
Diacritical characters in this character set are composed from Greek alphabets.
Although some fonts use the same letter forms for Greek and Latin, the design may
be different. Compare Y and Upsilon, or “v” and “nu” from Gentium (illustrated on
the right). Complete composites is no more than the first stage in designing the
Greek alphabet. If your font contains the Basic Greek character set, you can
generate the full Greek Extended character set by running the Greek Extended Transform script.

Composite data uses diacritics in the Greek Extended character set. These are
composed from Latin diacritics: tilde, grave, acute, and left/right single quotes. The
diacritics will need to be decomposed and adjusted to be suitable for Greek Extended.
The » Gentium « font was used to design the script and composite data. If you look at
that, you will see how best to design the Greek diacritics to work well with the Transform script.

Small Capitals and Petite Capitals
These are intended for use with the Unmapped Small Capitals transform script, which scales them to about 80%
of Caps Height, or the Unmapped Petite Capitals transform script, which scales them to the x-height. Users should
adjust the scale in the script to suit the proportions of their font. Small and Petite Capitals are no longer assigned
to code-points in the Private Use Area, but use glyph names. Transform scripts from earlier versions of FontCreator
can be used to add mapped glyphs for applications that do not support OpenType features.

Petite Capitals • Small Capitals
The Private Use Area (PUA) may be used as you like, e.g. for glyphs that have no assigned Unicode mapping,
but FontCreator no longer needs to use it for OpenType glyphs, and it is generally recommended to avoid
mapping glyphs used by OpenType features. See this discussion on TypeDrawers.

Old Style Figures
OldStyle (onum) or non-lining figures need to be redesigned for use with lowercase text. The tops should
align with the x-height, and the descenders on figures like 3, 5, 7, and 9, should descend below the
baseline. They can be added to fonts using the Unmapped OldStyle Figures Transform script. Check that
they do not exceed the WinDescent or recalculate the font’s metrics if necessary. If the default figures for
a font are non-lining figures one can add Lining Figures using the Unmapped Lining Figures script.

http://scripts.sil.org/gentium
http://typedrawers.com/discussion/comment/34954#Comment_34954
https://docs.microsoft.com/en-gb/typography/opentype/spec/features_ko#a-nameonum-idonumatag-39onum39

19 April, 2019 5 © High-logic

Uppercase Diacritics
If you want to use diacritics with reduced vertical height for uppercase, you can
define Uppercase (.case) diacritics. Lowercase composites use the regular diacritics,
but if case-sensitive diacritics are defined they will be used for uppercase composites.
Use the Uppercase Glyph Transform script to insert these diacritics, then redesign them.

Uppercase diacritics are used above Capitals, Petite Capitals, and Small Capitals.

Don’t just scale the diacritics vertically. Copy them, scale the copies
vertically by about 70%, then align the bottom nodes, before
deleting the scaled version. Some nodes may need to be adjusted
to maintain the correct weight.

Align Uppercase diacritics vertically for Capitals. Horizontal
alignment is not critical as Complete Composites will align them
horizontally automatically. Some manual adjustment may be
needed, especially for italic type styles or for scripts.

The new anchor-based feature should give more consistent results
with all kinds of different type faces.

Narrow Diacritics
If you want narrow diacritics for use with letters like i, j, or l, you can define narrow (.narrow) diacritics. Scale
the regular diacritics horizontally by about 80%. Align narrow diacritics vertically for lowercase. If used in
uppercase for diacritics above capital I or J, or above lowercase l, they will be moved up, whereas Uppercase
(.case) diacritics will not be moved vertically, only horizontally. For smaller diacritics for use with petite
capital glyphs that are not narrow, use a .cap suffix, e.g. dotbelowcomb.cap and commaaccentcomb.cap.

Modifying CompositeData.xml
This plain text file can be opened in any text editor, but if it supports line numbering, bookmarks, and
regular expressions for find and replace, it will make editing the file easier.. After editing
CompositeData.xml, you will need to restart Font Creator for the changes to take effect.

Insert and design all diacritics first, then use complete composites.

Glyph Names or Glyph Mappings?
FontCreator 10 was the first version to allow the use of glyph names as well as glyph mappings. Before that,
the Complete Composites feature depended on glyphs being mapped to a code-point. This is not a problem
for composite glyphs that have a Unicode code-point assigned to them, but any glyphs in the Private Use
Area had to occupy a particular code-point slot to allow automation of Complete Composites and Transform
scripts. Small Capitals or Petite Capitals, for example shared a range from 58033-59829 (decimal). A
Transform script could be used to insert nearly 200 characters mapped to these code-points, and generate
glyphs from the font’s Latin Basic capitals of the approximate size and weight for Small or Petite Capitals.
The scripts can be edited to adjust the size and weight as needed.

This necessity of using PUA code-points caused conflicts with fonts not created in FontCreator, which have
their own way of mapping extra glyphs for OpenType features. Some fonts leave them unmapped, while
some use PUA code-points that might be reserved for use by FontCreator.

The Complete Composites feature in FontCreator 12 almost completely avoids mapping glyphs to the PUA.
Only a few glyphs, which have no Unicode assignment, are given PUA code-points such as ę́ (proposed by
the Medieval Unicode Font Initiative).

The upside of glyphs mapped to the PUA is that they can be used in applications that do not support
OpenType features. If the application lacks any method for inserting them they can be copied and pasted
from Windows Character Map, or from another application that does support them.

Unmapped glyphs can only be used by Composite Glyphs or by OpenType features in applications that
support them. Not mapping them protects users from inserting them — which may well cause problems on
changing fonts in publications. A definition such as <GlyphName>gravecomb.case<GlyphName> can be
used within CompositeData.xml to reference a combining grave diacritic for use with Uppercase composite
glyphs like À grave. A code-point is no longer required. If glyphs are mapped to Uppercase diacritics they
will be used in preference to regular sized diacritics over capitals. If the Uppercase diacritics are present,
they will be used with petite capitals and/or small capitals.

Unmapped definitions follow those mapped to code-points.

https://folk.uib.no/hnooh/mufi/

19 April, 2019 6 © High-logic

From the Tools menu, Glyph Names, Generate, user-friendly names should be generated. The Complete
Composites feature requires them to add Unmapped Small Capitals with an OpenType tag suffix added to
the base glyph’s name, a.smcp … agrave.smcp, be-cyrl.smcp, alpha.smcp, etc. Transform scripts will scale
these glyphs and adjust the weight to suit the font design.

Edit the script to fine-tune the scale, weight, and position. Definitions like that below generate composites
from the base glyphs and diacritics.

Offsets
<!-- I have added comments in angled brackets to annotate the script -->

<Composite><!-- Unmapped Small Capital agrave -->
<GlyphName>agrave.smcp</GlyphName> <!-- case-sensitive name of glyph in font -->
 <Member id="1"> <!-- First composite glyph member -->
 <GlyphName>a.smcp</GlyphName>
 <UseMetrics>TRUE</UseMetrics> <!-- Use the bearings and advance width of a.smcp -->
 </Member>
 <Member id="2"> <!-- Second composite glyph member -->
 <GlyphName>gravecomb.case</GlyphName>
 <GlyphName>gravecomb</GlyphName>
 <GlyphName>grave</GlyphName>
 <!-- Fallback glyphs if gravecomb.case is not found -->
 </Member>
 <AlignHorizontal>
 <!-- Align the two glyph members horizontally -->
 <Source> <!-- Target glyph is a.smcp -->
 <Member>1</Member>
 <Position>Center</Position>
 <!-- Align to its center (spelling must be US -->
 </Source>
 <Dest>
 <!-- Member to be aligned with the target -->
 <Member>2</Member>
 <!-- gravecomb.case or grave diacritic -->
 <Position>Center</Position>
 <!-- Align center of diacritic -->
 <Offset>16.667%</Offset>
 <!-- Offset center by 1/6th of its width -->
 </Dest>
 </AlignHorizontal>
 <AlignVertical> <!-- Position the diacritic vertically -->
 <Source>
 <Member>1</Member>
 <Position>Top</Position> <!-- Align with top of the base glyph -->
 <Offset>22.17%</Offset> <!-- Offset above the base glyph by 22.17% of its height -->
 </Source>
 <Dest>
 <Member>2</Member>
 <Position>Middle</Position>
 </Composite> <!-- End of composite glyph definition -->

The vertical position for diacritics above Capitals, Small Capitals, and Petite Capitals was calculated using
a table to maintain the spacing in direct proportion to the glyph height. Units are funits @ 2048 / em.

Inherit Side-bearings
<InheritFromGlyphLSB> and <InheritFromGlyphRSB> can be used within definitions for composite
glyphs like ligatures, which need to use the left and right side-bearings from two different glyphs.

Metric Capital Small Capital Petite Capital
Cap Height 1493 1248 1120

Accent Line 1824 1525 1368

Spacing 331 277 248

% of Cap Height 22.17 22.20 22.14

Glyph Height 100% 83.59% 75.02%

19 April, 2019 7 © High-logic

<GlyphName>ae.smcp</GlyphName>
 <Member id="1">
 <GlyphName>a.smcp</GlyphName>
 <InheritFromGlyphLSB>TRUE</InheritFromGlyphLSB>
 </Member>
 <Member id="2">
 <GlyphName>e.smcp</GlyphName>
 <InheritFromGlyphRSB>TRUE</InheritFromGlyphRSB>
 </Member>
 <AlignHorizontal>
 <Source>
 <Member>1</Member>
 <Position>Right</Position>
 </Source>
 <Dest>
 <Member>2</Member>
 <Position>Center</Position>
 </Dest>
 </AlignHorizontal>
 </Composite>

OpenType Figures
Some fonts may need several types of figures. The most common default figures, which align with the tops
of capitals are called “Lining Figures.” OldStyle figures, which align with the x-height are also known as
non-lining figures. Again, in most fonts the figures are monospaced, but fonts with proportional default
figures may have Tabular Figures for use with tabulated data. Fonts that have default tabular figures, may
have “Proportional Figures” for use with text. By using OpenType features one can include different sets.
Name the glyphs appropriately, and Complete Composites will do what it can to generate appropriate
glyphs and align them. Some adjustments will be needed, but most of the work is done automatically. The
definition below will generate an OldStyle zero and scale it to match the x-height: The scale factor of 0.75
won’t be correct for all fonts, but in any case this is just the first step in designing the glyphs. Make them
simple and edit to suit the font design.

<GlyphName>zero.onum</GlyphName>
 <Member id="1">
 <GlyphName>zero</GlyphName>
 <UseMetrics>TRUE</UseMetrics>
 <YScale>0.75</YScale>
 </Member>
 </Composite>

The definition below will generate an OldStyle three, and position it just overshooting the x-height: The
x-height is 1120 funits and the figure three is 1549 funits high; 1.8% of 1549 is about 28 funits, so the top
of the glyph is positioned at 1148 funits. The figure three usually has a rounded contour at the top, whereas
figures five and seven are more often flat at the top. They are therefore not given any offset, but are aligned
precisely with the x-height. Figures six and eight are identical to the regular figures in most cases, and can
be left as composites.

<Composite><!-- Non-lining three -->
<GlyphName>three.onum</GlyphName>
 <Member id="1">
 <GlyphName>three</GlyphName>
 <UseMetrics>TRUE</UseMetrics>
 </Member>
 <AlignVertical>
 <Source>
 <Position>xHeight</Position>
 </Source>
 <Dest>
 <Member>1</Member>
 <Position>Top</Position>
 <Offset>-1.8%</Offset>
 </Dest>
 </AlignVertical>
 </Composite>

19 April, 2019 8 © High-logic

Tabular figures would be needed in fonts that have proportional figures by default. No scaling or vertical
repositioning of the glyphs will be needed, but the widths need to be uniform. Complete Composites
assumes that figure zero will have the greatest advance width, and uses that to calculate the width of
tabular figures. Each glyph will needs to be adjusted horizontally after generation to centre it optically
within the advance width. Transform scripts can be used to centre align glyphs within the advance width.

<Composite><!-- Unmapped Tabular one -->
<GlyphName>one.tnum</GlyphName>
<InheritFromGlyphAW>zero</InheritFromGlyphAW> <!-- Use advance width of glyph zero -->
 <Member id="1">
 <GlyphName>one</GlyphName> <!-- Insert glyph one -->
 </Member>
 </Composite>

It is allowable to mix <GlyphName> with <GlyphMapping> in the same definition but if both are used for
the same glyph member the one defined with a mapping will be used first. I use decimal code-points
because I find them easier to remember (Hold Alt and type 48 on the numeric keypad to get a zero), but
one can also use Hexadecimal code-points ($30 ≡ 48, i.e. 3x16).

One could use, for example:–

<Composite><!-- Unmapped Tabular one -->
<GlyphName>one.tnum</GlyphName>
<InheritAW>$30</InheritAW>
 <Member id="1">
 <GlyphMapping>$31</GlyphMapping>
 </Member>
 </Composite>

However, one cannot use <InheritAW>zero</InheritAW> as FontCreator expects to find a code-point there,
so any code after that line in the script will not be executed. Proportional figures simply replicate the default
figures. It is up to the designer how much the glyph’s side-bearings or glyph contours should be adjusted
to suit proportional figures.

<!-- ¶¶ Unmapped Proportional Figures -->
<Composite><!-- Unmapped Proportional zero -->
<GlyphName>zero.pnum</GlyphName>
 <Member id="1">
 <GlyphName>zero</GlyphName>
 </Member>
 </Composite>

Lining figures are defined in the same way. If the font’s default figures are OldStyle non-lining figures like
those in Georgia, considerable design effort will be needed to create suitable designs for use with
capitalised text. They may or may not be monospaced like Tabular Figures.

<!-- ¶¶ Unmapped Lining Figures -->
<Composite><!-- Unmapped Lining zero -->
<GlyphName>zero.lnum</GlyphName>
 <Member id="1">
 <GlyphName>zero</GlyphName>
 </Member>
 </Composite>

<InheritFromGlyphLSB> and <InheritFromGlyphRSB>can be used to get the side bearings from
named glyphs, while <InheritFromGlyphSB> will get both. These commands are useful to get bearings
from a glyph other than the current glyph member. For example, in this script for Proportional Figures
(pnum) it is used to get the left and right bearings from glyph eight to apply to other digits that would have
larger side-bearings:–

<Composite><!-- Unmapped Proportional one -->
<GlyphName>one.pnum</GlyphName>
<InheritFromGlyphLSB>eight</InheritFromGlyphLSB>
 <InheritFromGlyphRSB>eight</InheritFromGlyphRSB>
 <Member id="1">
 <GlyphName>one</GlyphName>
 </Member>
 </Composite>

19 April, 2019 9 © High-logic

<InheritFromGlyphAW> gets the width of a named glyph while the short form <InheritAW> can be used
instead of the legacy command <InheritAdvanceWidth>.

<InheritFromGlyphAW> is used below to ensure that all single alternative fractions are the same width. If
the width is incorrect, edit the divisor.afrc glyph first, then recompose the fractions.

Alternative Fractions
<Composite><!-- Alternative Fraction 1/4 -->
<GlyphName>onequarter.afrc</GlyphName>
<InheritFromGlyphAW>divisor.afrc</InheritFromGlyphAW>
 <Member id="1">
 <GlyphName>onenumerator.afrc</GlyphName>
 </Member>
 <Member id="2">
 <GlyphName>divisor.afrc</GlyphName>
 </Member>
 <Member id="3">
 <GlyphName>fourdenominator.afrc</GlyphName>
 </Member>
 </Composite>

The way that Alternative Fractions are designed is intended to make later editing much easier. Including
the numerators and denominators in the exported font is not essential, but if they are deleted the
composites that they use will be converted to simple glyphs, so the font will probably get bigger, not
smaller. By following the right sequence a lot of unnecessary editing can be avoided:–

1. Run the transform script to insert the glyphs, and let Complete Composites generate the
numerators and denominators by scaling the default figures in the font.

2. Use the preview toolbar to see how the fractions look when mixed with default figures. Are they too
heavy or too light? Is the spacing between them correct?

3. Edit the single numerators and denominators, and the divisor carefully to remove any intersecting
contours, smooth the outlines, and adjust the weight as required. The script can also be edited to
adjust the bold effect, and run again after deleting the glyphs created by the first attempt.

4. Now edit the double numerators from 11-63, and the denominators 10, 16, 32, and 64 to adjust
alignment and spacing. The numerators get their advanced width from the denominators, so edit
the denominators first.

5. Make the numerators and denominators simple to avoid composites of composites.
6. Add an OpenType Alternative Fraction feature to make use of these new glyphs.
7. Add kerning pairs for 1/16, 1/32, 1/64 etc, with the straight quotes " and ' for inches and feet.

Definitions to Aid Design
FontCreator 12.0 added a new feature to create diacritical characters using anchors. This often works better
than Complete Composites to position the diacritics correctly, especially with italic typefaces. However,
Complete Composites is still very useful for using with transform scripts, e.g. to insert a complete set of
Petite Capitals or Small Capitals. If fonts contain the basic Greek or Cyrillic glyphs, there are also scripts for
inserting Petite or Small Capitals for Greek or Cyrillic.

Another area where Complete Composites is useful is in generating symbols. By using it to create a minus
sign from the plus sign, for example, you can ensure that both glyphs have the same advance width, the
same weight, and the same vertical position for alignment with figures in formulae like 3+4−2=5. Likewise,
± is generated from plus and minus. After using complete composites to generate minus, decompose the
composite glyph, switch to point mode, and delete the vertical stroke. For multiply (×), delete the vertical
stroke, duplicate the horizontal stroke, rotate the copy by 90°, get union of contours, and rotate the now
symmetrical glyph by 45° about its centre. The advance width and vertical position will match perfectly
with the plus sign: (4×3)÷6+5=7. The divide sign (÷) is composed from minus and the colon. Many more
Mathematical Operators like ≈ ≤ ≥ ≡ are generated in the same way. Superset is generated from subset,
union from intersection, double and triple integral from integral, etc. If you later which to refine the design
of these composite glyphs, edit their source, and the changes will be reflected in the composed glyph. You
may have to regenerate the composite to update the advance width or reposition them to allow for
overshoots.

Enclosed Alphanumerics like circled A are generated from the Large Circle in Geometric Shapes, and
Superscript glyphs. If the font has no superscripts for capitals, Petite Capitals are Used, if there are no
Petite Capitals either, Capitals are used.

Please post details of any errors on the » High-logic Bug Report Forum «

http://forum.high-logic.com/viewforum.php?f=6

	Composite Data Update
	Legacy Instructions
	Processing Order for Instructions
	Stacking Diacritics for Vietnamese
	Superscripts
	Subscripts
	Fractions
	Composites Used to Aid Design
	Composites With Stroke
	Greek and Coptic
	Old Style Figures
	Modifying CompositeData.xml

	Glyph Names Added to Glyph Mappings
	OpenType Figures
	Alternative Fractions

